Fdtd Investigation on Bistatic Scattering from a Target above Two-layered Rough Surfaces Using Upml Absorbing Condition

نویسندگان

  • J. Li
  • L.-X. Guo
  • H. Zeng
چکیده

This paper presents an investigation for the electromagnetic scattering characteristic of the 2-D infinitely long target located above two-layered 1-D rough surfaces. A finite-difference time-domain (FDTD) approach is used in this study, and the uniaxial perfectly matched layer (UPML) medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used for the total computation domain by properly choosing the uniaxial parameters. The upper and lower interfaces are characterized with Gaussian statistics for the height and the autocorrelation function. For the composite scattering of infinitely long cylinder and underlying single-layered rough surfaces as an example, the angular distribution of scattering coefficient with different incident angles is calculated and it shows good agreement with the numerical result by the conventional method of moments. And the influence of some parameters related to the twolayered rough surfaces and target on composite scattering coefficient is investigated and discussed in detail.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FDTD Investigation on Electromagnetic Scattering from Two- Dimensional Layered Rough Surfaces

─ This paper presents an investigation into the electromagnetic scattering characteristic of two-dimensional (2-D) layered rough surfaces by using a finite-difference time-domain (FDTD) algorithm, which constitutes a three-dimensional scattering problem. The uniaxial perfectly matched layer medium is adopted for truncation of FDTD lattices, in which the finite-difference equations can be used f...

متن کامل

A Partial Coherent Physical Model of Third and Fourth Stokes Parameters of Sastrugi Snow Surfaces over Layered Media with Rough Surface Boundary Conditions of Con- Ical Scattering Combined with Vector Ra- Diative Transfer Theory

In this paper, a partial coherent approach is used to study the third and fourth Stokes parameters in passive microwave remote sensing of Sastrugi snow surface over layered snow structures. The incoherent part of the model consists of using radiative transfer theory for the snow layers. The coherent part of the model is using numerical solutions of Maxwell equations to derive the bistatic scatt...

متن کامل

Numerical Simulations of Wave Scattering from Two-layered Rough Interface

Method of Moments (MOM) combining with the Kirchhoff Approximation(KA) for analysis of the problem of optical wave scattering by a stack of two one-dimensional Gaussian rough interfaces is solved. The scattered field from the upper interface is solved by MOM and the transmitted field from the lower one is expressed from the Kirchhoff approximation where the multiple scattering phenomenon is neg...

متن کامل

Acceleration of the 3D FDTD Algorithm in Fixed-point Arithmetic using Reconfigurable Hardware

Understanding and predicting electromagnetic behavior is needed more and more in modern technology. The Finite-Difference Time-Domain (FDTD) method is a powerful computational electromagnetic technique for modelling electromagnetic space. However, the computation of this method is complex and time consuming. Implementing this algorithm in hardware will greatly increase its computational speed a...

متن کامل

Numerical analysis of scattered waves from rough surfaces with and without an object

The effects of rough surface scattering on the detection and imaging of objects are important in many applications including the imaging of objects on or near ocean surfaces and the detection of objects buried under ground rough surfaces. This paper focuses on the following problems: (1) Scattering from wedge-like rough surfaces representing ocean surfaces with sharp crested waves. (2) Scatteri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008